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Abstract

This paper presents a new model for predicting the
1/f (flicker) frequency noise in quartz resonators as
a function of the unloaded resonator quality factor Q
and volume under the electrodes for bulk acoustic
wave (BAW) resonators. The functional form of this
model originates from a quantum 1/f theory for
scattering of phonons from the primary oscillator
mode. Using this new model, we are able to match
the 1/f frequency noise observed in the best quartz-
controlled oscillators and resonators. Quite
unexpectedly, this model indicates that the amplitude
of 1/f frequency noise might be improved by making
resonators with smaller electrodes. BVA resonators
show approximately a factor of 3 improvement in 1/f
frequency noise (Sy(f) over electroded resonators with
the same unloaded Q-factor and electrode volume.

Introduction

The amplitude of 1/f or flicker frequency noise in
quartz resonators is a very important parameter of
oscillators used in a wide range of applications.
Although work has been done in this area for more
than 20 years, it is difficult to find data where the
operating conditions and all of the resonator
parameters are well known. In addition, some
workers report S,(1 Hz), while others report g,(1 s
or 100 s). For a given resonator Q, many different
levels of frequency stability have been reported.
Some of the variation may be due to random walk
and drift which were not removed from the data and
thereby bias the estimate the amplitude of 1/f
frequency noise. In some cases the electronics may
limit the noise. ~What is needed for accurate
modeling is the amplitude of the 1/f frequency noise
in the resonator, independent of electronic noise.
The variation in Sy(f) for the same Q may also
indicate that some other variable significantly affects
the 1/f frequency noise as the acoustic losses become
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small. Given these problems and uncertainties in the
available data, it is difficult for any model to fit all
the data. The 1/f contribution to frequency stability
is best obtained by observing the stability over a
range of measurement times in the time domain or a
range of frequencies in the frequency domain. From
the extended data we can fit a flicker-of-frequency
model to the data that exclude the biases due to
random walk FM and drift present in many
resonators and oscillators (see Fig. 1).

Gagnepain [1] was one of the first to systematically
study 1/f noise as a function of geometry,
temperature, and Q. He found that the 1/f
contribution to the spectral density of fractional
frequency fluctuations, S (f), varies as 1/Q* for
resonators between approximately 1 and 25 MHz.
As the temperature of a resonator changes, Q
changes. This makes it possible to exclude the effect
of many other factors. Additional work by Parker,
however, showed that the data from both BAW and
Surface Acoustic Wave (SAW) devices could be
roughly fit to the same model if one assumes a 1/Q*
dependence for Sy(f) instead of Sy(t) [2]. The fitis
not particularly good, for the best resonators (see
Fig. 2).

From a theoretical viewpoint, work on the general
problem of 1/f fluctuations in systems has long
pointed toward a 1/Q* dependence for S,(f) [1,3,4,5].
Work on many systems other than quartz has yielded
very good quantitative agreement between theory and
experimental data for 1/f quantum noise [5]. The
1/Q* dependence of the 1/f contribution to Sy(f) is,
however, in apparent conflict with the 1/f noise of
the best quartz resonators over a wide frequency
rangse where the dependence is between 1/Q* and
1/Q°.

This paper refines the previous theoretical work on
1/f noise in quartz to suggest a better framework for
predicting the amplitude of 1/f noise in quartz
resonators over a wide range of frequencies and Q
[1,3,4,5].



Phase Noise Model for 5 MHz Oscillator
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Figure 1. Phase noise of a 5 MHz quart z oscillator as a function of Fourier frequency. The coefficient of the f3
component corresponds to 1/f (flicker) frequency noise.
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Figure 2. 1/f noise level at 1 Hz (Sy(f) of quartz
acoustic resonators as a function of unloaded Q [2].
Reference numbers are from [2].

Condensed Theory of 1/f Noise in Quartz Resonators

According to the general quantum 1/f formulation
[5), T2S(f) = 2A/f with & = €%/Ac = 1/137 and
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A = 2(Al/ec)?/3x is the quantum 1/f effect in any
physical process rate T'. Setting J = dP/dt = P,
where P is the vector of the dipole moment of the
quartz crystal, we obtain for the fluctuations in the
rate I' of phonon removal from the main resonator
oscillation mode the spectral density

I'2SL(f) = 4a(AP)?(3we’c?), M

where (AP)? is the square of the dipole moment rate
change associated with the process causing the
removal of a phonon from the main oscillator mode.
These fluctuations in the rate T’ are obtained by
scattering on a phonon from any other mode of
average frequency <w>, or through a two-phonon
process at a crystal defect or impurity, involving a
phonon of average frequency, <w’>. To calculate
it, we write the energy W of the interacting resonator
mode <w> in the form

W = ni<w> = 2(Nm/2)(dx/dt)? =
(Nm/e?)(edx/dt)> = (m/Ne?)eP)>. )
The factor 2 includes the potential energy

contribution. Here m is the reduced mass of the
elementary oscillating dipoles, 6 their charge, € a



polarization constant, and N their number in the
quartz crystal between the electrodes. Applying a
variation An = 1, we get

Anin = 2|AP|/|P|, or AP = Pi2n. @
Solving Eq. (2) for P and substituting, we obtain

|AP| = VA<w >/n)*(ef2). )
Substituting AP into Eq. (1), we get
I2SK(f) = Nah<w> /(3namc?fe?) )

= AIf.

This result is applicable to the fluctuations in the loss
rate " of the quartz. In the presence of a damping
term I', the frequency of a harmonic oscillator of
unperturbed angular frequency wy is

w = V(.«)‘z,—ZI"2 where Q = _2%

The fractional variation of w, due to fractional
changes in I' is
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The spectral density of frequency fluctuations of the
quartz resonator is [4]

28 () = (1/40HAN =
w =S, (N = (1/4Q°) ALY @)

Naki<w > /(12nxmc*2QY),

where Q is the unloaded quality factor of the single-
mode quartz resonator considered, and <w> is not
the circular frequency w, of the main resonator
mode, but rather the nearly constant frequency of the
average interacting phonon, considering both three-
phonon and two-phonon processes. The
corresponding AP in the main resonator mode also
has to be included in principle, but is negligible
because of the very large number of phonons present
in the main resonator mode.

Eq. (7) can be written in the form

5,00 = BVIRRY,

where, with an intermediary value <w> ~
2x10'"Ys, n = kT/h<w>, T = 300K and kT =
4 x 104, 8 = (N/V)ah<w>/(12n7e¢mc?) =
1022(1/137)(102710%)2/(12kTx(2 x 10°24)
9x102% = 1.

®
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The form of Eq. (8) shows that the amplitude of 1/f
frequency noise depends not only on Q* as previously
proposed but also on the volume between the
electrodes. This model qualitatively fits the data of
Gagnepain et al. [1,3] and the recent data of El Habti
and Bastien [6], where Q was varied with
temperature in the same resonator (but not frequency
or volume).

The model also provides the basis for predicting how
to improve the 1/f noise in resonators beyond just
improving the Q, which has been known for many
years. Since the amplitude of 1/f noise depends on
active volume, we use the lowest overtone and
smallest electrode diameter consistent with other
circuit parameters.

Experimental Measurements and Analysis
of 1/f Noise in Quartz Resonators

The 1/f frequency noise in quartz resonators has been
measured using phase bridges and in complete
oscillators [1,2,6-12]. Unfortunately much of the
data in the literature are unusable for modeling
because the unloaded Q is unknown. (Our case is
even more restrictive because we also need to know
the electrode size). The advantages of the phase
bridge approach are that the unloaded Q can be easily
measured and the noise in the measurement
electronics can be evaluated independent of the
resonator. If resonator pairs are used, driving source
noise can generally be neglected and the pair can
operate at virtually any frequency [9]. The oscillator
approach makes it possible to compare many different
resonators one at a time. The noise of individual
oscillators can be derived by measuring the phase
noise between 3 oscillators [14].

Figure 3 taken from [2] is one of several studies
showing that the amplitude of 1/f frequency noise is
virtually independent of the loaded Q. This is in
complete agreement with the theoretical model. In
practical oscillators dependence on loaded Q occurs
only when the phase noise of the sustaining
electronics contributes to the overall noise level.

We have analyzed 1/f frequency noise as a function
of unloaded Q, volume under the electrodes, and
frequency. For a given resonator geometry and
manufacturer, we have taken the best values reported
of Sy(f) to remove the effects of poor crystals or
electronics. In Fig. 4 we have taken all of the
precise data available with unloaded Q, electrode
volume, and frequency stability and plotted it
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Figure 3. 1/f noise level at 1 Hz (Sy(f) of 4 SA’

according to the three models. Except for the 2.5
MHz resonator where Qv, = 0.95 x 10", the Qu,
product for all resonators plotted is near 1.2 x 101
(this is close to the material limit for AT and SC cut
resonators). The curve labeled K, shows the fit of
the data to the model [1]

s,() = K/f(3 X 105/Q%. (10)

varies about a factor of 500 for Q between 10°
and 3.8 x 10% (with resonator frequencies between
2.5 and 100 MHz). The curve labeled K, shows the
fit of the same resonator data to the model [2]

S¢(0 = Ky/f (3 x 10/QY. (11
K varies about a factor of 10 for the same range in

Q. Curves B, and B, show the fit of the same
resonator data to the model

resonators as a function of loaded Q [2]. Sy(t) = B/f (Vol/QH), 12)
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Figure 4. 1/f frequency noise for 9 resonators plotted according to the three different models using the fitting
parameters Ky, K@, Be, and b as a function of the unloaded Q-factor. The confidence interval for the individual
points varies from 1 to 3 dB. Only resonators with the lowest level of 1/f noise are reported for each type [8, 11,

13].
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where B, is for SC and AT resonators with electrodes
plated on the resonator and By, is for BVA-style AT
and SC resonators [7]. Volume between the
electrodes (in cm®) is used to approximate the volume
of quartz contributing to the scattering of power from
the primary resonator mode. The B factors are
remarkably constant for Q from 10° to 3.8 x 105.

Figure 5 shows the dependence of 8 on Q for 3
different types of resonators as measured by Norton
[8]. The wide variation in 8_ and g, for the same
type of resonator and Q indicates that acoustic loss is
not the only mechanism contributing to the noise
level. The data for this graph were taken from
measurements of ay(100 s) in similar oscillators. The
difference between the various resonators of a given
type can only be due to differences in the resonators.
The reference oscillator for these measurements was
a hydrogen maser. The data of Fig. 4 used only the
smallest value of 3 for each resonator type.

Discussion

The 1/f frequency noise of the most stable resonators
is in excellent agreement with the functional form of
Eq. (8). The agreement between the theoretical and
the experimentally measured values of 3 to the same
order of magnitude is remarkable considering the
rough approximation of both the average phonon
frequency <w> and the number N of oscillating
dipoles (through volume) under the electrodes
contributing to the scattering processes. The data
suggest that the correct volume is that between the
electrodes and not the volume of the oscillating
mode. Further investigation of this question would
help in interpreting the theory. One method would
be to measure the 1/f frequency noise of a high
performance resonator as a function of the diameter
of the electrodes, since many other variables would
be held constant. We are not surprised that 8, and 8,
are different for the two types of resonators, since
energy trapping and electrode stress are considerably
different.
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Figure S. Fitting parameter 3 as a function of unloaded Q-factor for three types of resonators. The resonators in
each group were matched in all known electrical parameters except Q-factor and 1/f noise [15].
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Figure 5 shows that there is at least one other noise
process besides acoustic loss that affects the 1/f
frequency noise in some resonators. The magnitude
of B in Fig. § is larger for the electroded resonators
than for the BVA resonators. This suggests that the
extra noise source is associated with the electrode-
quartz interface. The fractional variation in g is
roughly comparable for the two types of resonators.
Much more data on resonators from the same
material with the same surface preparation are needed
to make any further conclusions.

Although we have analyzed only the data for a few
resonators, the consistency of B, and By, over a factor
of 40 in Q and resonator frequency and the general
agreement for the magnitude of B between theory and
experiment give us confidence that this new model
can be used to predict the best performance of
different resonator geometries and as a basis to
analyze other 1/f noise processes in quartz
resonators.

This new volume model predicts that a resonator
having smaller electrodes would have lower 1/f
frequency noise than another with the same frequency
and Q but with larger-diameter electrodes. The
decrease in electrode area would increase the
impedance and degrade the wide-band noise
somewhat. For most resonators the wideband noise
is dominated by the electronics and not the resonator.
The increase in series resistance, obtained by
decreasing the electrode area by a factor of 4, would
probably be tolerable from the standpoint of
wideband noise, but might require a change in loop
gain.

BT-cut resonators are potentially useful in that they
offer a Qu, product approximately 3 times higher
than that of AT- and SC-resonators. BT-cuts are
nearly as sensitive to temperature transients as AT
cuts. Therefore to achieve parts in 101 frequency
stability with BT cuts would require temperature
stabilities of order 10? K/s or 100 times better than
is required for SC-cut resonators [14]. The phase
noise requirements of the sustaining electronics would
be less than for other resonators due to the increase

in Q.

We conclude based on these early observations that
the amplitude of 1/f frequency noise in quartz may
yet be improved to 107 14 by applying one or more of
the following techniques: reducing the electrode area,
using lower-overtone resonators, using BVA type
resonators, going to lower frequencies, and using BT-
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cut resonators. Acceleration-induced effects,
however, become more dominant as the stability
improves [16].
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